Makers was started in the Fall of 2016 by three engineering students at the University of Southern California as an effort to promote more innovation and interest in electronics on campus. The mission of Makers is to facilitate the exploration of concepts in electronics design and stimulate interest in fields of electronics such as the Internet of Things, Embedded Systems, and Robotics. The organization hopes to serve as a resource for its community by offering its assistance with electronics-related projects and hosting workshops that are open to the general public.






Director of Marketing


Co-Director of Programming


Co-Director of Programming


Assistant Director of Programming


Director of Events


Director of Membership


Assistant Director of Membership


Director of Finance


Director of Outreach


Bits Please Magic Mirror

Our team built a "magic mirror" which is essentially a smart mirror IoT device that is able to access a myriad of helpful information from basic things like the weather, time, and date, to reminders from Google Calendar, a Spotify player, and the top social media and news headlines. It has the unique feature of complimenting you when you get closer to it (with the help of an ultrasonic sensor). We configured the brain of the mirror (the raspberry pi) with modules from an open source framework and modified them for our mirror. We also built our frame from scratch. Our team got to explore all types of fun technologies and modules through building this mirror, and had the best time putting it together!

Boba Babes

Our project was building an IoT Boba Machine which autonomously makes our favorite drink: boba tea. It brews tea in hot water and adds milk, tapioca pearls, and honey. We built and designed the physical machine from the frame and various apparatuses to brew the tea and put in the necessary ingredients to make delicious boba. We also connected the machine to a phone app where you tell it when to start and how to adjust sweetness. Overall, we're a really chill team who likes to have fun but also get work done. This project involves many different components - mobile app design, CAD, working with motors/sensors, IoT integration, working with tools (i.e. drill, band saw, hammer), and is very hands on.


Originally inspired by the CHARIOT project headed by Professor Krishnamachari, HADES aims to create wearable attention trackers for use in the classroom. This allows a teacher to track how many of her students are actually learning the material and allows for her to adjust mid-lesson to maximize student potential. To create the wearable tracker, we used currently existing wearable technology combined with biosensors to track physical symptoms of decreased attention span, including heart rate, body temperature, and galvanic skin response. The sensors, combined with a wifi-enabled microcontroller, are packaged into one single glove, allowing for the child’s ease of wear and durability.


Micromouse is an existing international competition in which teams build robots that can autonomously navigate mazes and find the fastest path through said maze. Our project was to build a robot capable of performing in a Micromouse event, and then improve that as time goes on to make ourselves more competitive and well-known within the scene. Alongside this, we built a simulator for different maze discovering and solving algorithms, which we used to test our algorithms while our robot was being built.


Robosketch is a drawing robot that uses pens to draw on 8.5x11" paper. It can draw arbitrary shapes and scaled vector graphics.

Smart Rebounder

The Smart Rebounder is a basketball hoop attachment aimed at improving athlete shot training. It attaches to the rim of the basket and acts as a slide to funnel make baskets back to the shooter. It uses OpenCV and servo motors to track the shooter’s position and rotate the attachment to point in the direction of the athlete in order to funnel their made baskets back in their direction.

Stratos Speaker System

The goal of this project was to build a professional-grade home speaker system that leverages IoT technologies to provide audio to different areas of the house. For our project we have built a unit that will receive music streams from multiple devices and output them to the appropriate series of speakers.


We have constructed a musical instrument that relies solely on analog electronics and an interesting EM phenomenon. We've breadboarded a circuit based on a guide we found online, and have put it on a Printed Circuit Board (PCB).

A Huge Thank You To Our Sponsors